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Outline
� Continuous-time Markov Chains

� Little’s Law & M/M/1 Queue
� Reading: Sections 9.2-9.3 of Srikant & Ying

� R. Srikant and Lei Ying, Communication Networks: An Optimization Control 
and Stochastic Networks Perspective, Cambridge University Press, 2014. 
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Continuous-time Queueing Systems

� Customers (or packets) arrive at a queue according to some 
arrival process, the service time of each customer is some 
random variable

� Arrival rate 𝜆: the average number of arriving customers per 
second

� Service rate 𝜇: the average number of customers served by a 
single server per second
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Little’s Law

� Little’s Law also holds for continuous-time queues.
� Little’s Law: 

𝐿 = 𝜆 𝑊
where 𝐿 is the average number of customers in the system, 𝑊 is the 
average time spent in the system, and 𝜆 is the arrival rate of the 
system.
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Standard Notation for Queues

� If, instead of M, we use G, it denotes either general inter-arrival 
times or service times, depending on whether the G is in the first or 
second position in the above notation. 

� The notation GI is used to indicate that the inter-arrival times (or 
service times) are independent.

� We also use D to denote constant (or deterministic) inter-arrival or 
service times.
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Poisson Process
� An arrival process with exponentially distributed i.i.d. inter-

arrival times is called the Poisson process.
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Poisson Process （2）
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Uniformly Distributed Event Times
� Let 𝑊!,𝑊", … ,𝑊# be the event times of a Poisson process.
� Given 𝑋(𝑡) = 𝑛, the joint probability density function of 𝑊!,𝑊", … ,𝑊#

is given by

� If 𝑛 = 1, 𝑊! is uniformly distributed on [0, 𝑡].
� If 𝑛 = 2, (𝑊!,𝑊") is uniformly distributed on a triangle shown below

𝑥!

𝑥"

𝑡

𝑡
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Poisson Process （3）
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The M/M/1 Queue

� Also called the 𝑀/𝑀/1/∞ queue
� Let 𝑞(𝑡) denote the number of customers in the system 

(including any currently in service) at time 𝑡, which forms a time-
homogeneous CTMC. 

� Inter-arrival times are exponential with mean 1/𝜆
� Inter-departure times are exponential with mean 1/𝜇
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The M/M/1 Queue (2)

� Transition rate matrix 𝑸 is

� Derivations given in Srikant and Ying 
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Local Balance Equation
� Local Balance Equation 

𝜆 𝜋$ = 𝜇 𝜋$%!

is a sufficient condition for 0 = 𝜋𝑸.
� Let 𝜌 = 𝜆/𝜇, we get

𝜌 𝜋$ = 𝜋$%!

� If 𝜌 < 1, then 

𝜋&= 1 − 𝜌
𝜋$= 𝜌$(1 − 𝜌)

In this case, the CTMC is positive recurrent. 



13

Performance of the M/M/1 Queue
� The mean number of customers in the system:

𝐿 =;
$'!

∞
𝜌$(1 − 𝜌)𝑖 =

𝜌
1 − 𝜌

� From Little’s law, the mean delay (i.e., waiting time in the queue 
+ service time) of a customer:

𝑊= =
>
= ?

@ A >

� The mean waiting time of a customer in the queue:

𝑊( = 𝑊 −
1
𝜇
=

𝜌
𝜇 − 𝜆
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Performance of the M/M/1 Queue (2)
� The mean number of customers in the queue (again, by Little’s 

law): 

𝐿( = 𝜆𝑊( =
𝜌"

1 − 𝜌

� Note that “the fraction of time the server is busy = Pr(there is at 
least one customer in the system)”
� Hence, the fraction of time the server is busy is 

𝑈 = 1 − 𝜋& = 𝜌
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Performance of the M/M/1 Queue (3)
� Note that “at most one customer can be in the server,” hence

𝐿) = average number of customers in the server
= fraction of time that the server is busy 
= 𝑈 = 𝜌

� Waiting time in front of the server is 

𝑊) = average amount of time spent by a customer in service
= 1/𝜇.

� Applying Little’s law to the server alone, we obtain

𝑈 = 𝐿) = 𝜆𝑊) = 𝜆/𝜇 = 𝜌.
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Summary
� Little’s Law holds for continuous-time queues

� The M/M/1 queue 
� The mean queue length is 𝜌/(1 − 𝜌) and the mean delay is 

1/(𝜇 − 𝜆).

� Reading: Sections 9.2-9.3 of Srikant & Ying


